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This review traces the history and logical progression of methods for quantitative analysis of
enzyme kinetics from the 1913 Michaelis and Menten paper to the application of modern computa-
tional methods today. Following a brief review of methods for fitting steady state kinetic data, mod-
ern methods are highlighted for fitting full progress curve kinetics based upon numerical
integration of rate equations, including a re-analysis of the original Michaelis–Menten full time
course kinetic data. Finally, several illustrations of modern transient state kinetic methods of anal-
ysis are shown which enable the elucidation of reactions occurring at the active sites of enzymes in
order to relate structure and function.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

In their 1913 paper Leonor Michaelis and Maud Menten sought
to achieve ‘‘the final aim of kinetic research, namely to obtain
knowledge of the nature of the reaction from a study of its pro-
gress’’ [1]. The challenge of the day was to account for the full time
course of product formation in testing the postulate that the rate of
an enzyme-catalyzed reaction was proportional to the concentra-
tion of enzyme–substrate complex. They did so without knowing
the concentration or even the chemical nature of enzymes—a trib-
ute to the power of quantitative kinetic analysis. Today, the impor-
tant questions have advanced to asking how enzymes achieve such
extraordinary efficiency and specificity, while structural and spec-
troscopic studies have provided a powerful complement to kinetic
analysis to greatly expand our understanding of enzyme catalysis.
While the techniques for data collection and analysis have
advanced to meet the sophistication of the questions that are being
addressed, kinetic analysis has remained as a cornerstone of enzy-
mology because studies of the rate of reaction allow alternative
pathways to be distinguished. Here, I will briefly review the meth-
ods of kinetic analysis developed by Michaelis and Menten that go
beyond the simple initial velocity methods for which they are
known, and contrast their analysis with modern computer-based
global data fitting methods.

Roger Goody and I recently published a complete translation of
the 1913 Michaelis–Menten paper originally written in German
[2,3]. We were surprised to learn that Michaelis and Menten per-
formed what can be considered as the first global data analysis
of full progress curves, going far beyond the simple steady state
kinetic studies for which they are commonly recognized.

As the foundation of their analysis, Michaelis and Menten
devised the now popular initial velocity measurements, but they
also derived equations for competitive product inhibition and mea-
sured the dissociation constant (Kd) for each product. They studied
the enzyme, invertase (EC 3.2.1.26, b-D-fructofuranosidase), named
for the resulting inversion of optical rotation observed upon con-
version of sucrose to glucose plus fructose. Interestingly, the crys-
tal structure of invertase from Saccharomyces was solved for the
first time this year [4]. Michaelis and Menten chose to study
invertase because the change in optical rotation provided a conve-
nient signal to monitor the hydrolysis of sucrose and thereby test
the theory that the rate of reaction was proportional to the concen-
tration of the enzyme–substrate complex. They are most noted for
the Michaelis–Menten equation, which was first derived by Henri
[5], although his experiments failed to support the theory because
of shortcomings in his experimental design; namely, the failure to
control pH and to account for mutarotation of glucose [1,2]. This
provides an important example that is still pertinent today. Testing
a scientific theory requires careful measurement and accurate
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Fig. 1. Comparison of three methods of fitting data to the Michaelis–Menten
equation. (A) Data fit by nonlinear regression to a hyperbola. (B) Data fit to a
Lineweaver–Burk reciprocal plot. The gray line shows the fit obtained after omitting
the point at the lowest substrate concentration. (C) Data fit using the Eadie–Hofstee
equation. In each figure, the equation and the resulting kcat and Km values are
displayed.
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quantitative analysis. Because of their attention to detail in the
laboratory and their careful, quantitative analysis, the names of
Michaelis and Menten are indelibly linked to the simple equation
relating the rate of an enzyme-catalyzed reaction to the concentra-
tion of substrate:

v ¼ Vmax½S�
Km þ ½S�

ð1Þ

Measurement of the binding affinity for an active enzyme–sub-
strate complex was a landmark discovery of the day. Although it is
now widely accepted that the Michaelis constant, Km, is not gener-
ally equal to the enzyme–substrate dissociation constant, for
invertase the Km probably is equal to the Kd given the weak appar-
ent binding affinity (16.7 mM). The more general derivation of the
Michaelis–Menten equation that is presented in most textbooks is
based upon the steady state approximation, as derived 12 years la-
ter in 1925 by Briggs and Haldane [6].

Finding a method for fitting the concentration dependence of
the initial velocity was problematic for Michaelis and Menten. Esti-
mation of Km could be obtained from the velocity at half of Vmax,
but extrapolation to estimate the velocity at infinite substrate
concentration presented an obstacle. They devised a complicated
analysis based upon the logarithm of the rate and derived an equa-
tion analogous to the Henderson–Hasselbalch equation for pH
dependence, which was published 4 years later [7]. They normal-
ized their data based upon the expected slope of a semi-log plot
at the midpoint of the transition, thereby affording an estimation
of the rate at infinite substrate concentration and hence, the Km.
It is indeed surprising that in spite of the complexities of this anal-
ysis, it was not until 20 years later that Lineweaver and Burk de-
vised the simple reciprocal plot [8]. As a tribute to the popularity
of this simple algebraic transformation, their paper went onto
become the most cited in the history of the Journal of the American
Chemical Society.

The Lineweaver–Burk reciprocal plot presents some problems
due to the unequal weighting of errors as illustrated in Fig. 1.
Fig. 1A–C show the same data set fit by nonlinear regression to a
hyperbola (Fig. 1A) compared to fits derived by linear regression
using a Lineweaver–Burk plot (Fig. 1B) and an Eadie–Hofstee plot
(Fig. 1C). In the reciprocal plot, the least accurate data, obtained
at the lowest substrate concentrations, alter the slope of the line
because of the long lever arm effect on the reciprocal plot, leading
to overestimation of kcat and Km. Of course, this data set was
selected to illustrate the problems and proper weighting of errors
based upon the measured standard deviation can rectify the
unequal weighting of errors in the reciprocal plot, but that is rarely
done. These considerations led to the generation of another trans-
form of the Michaelis–Menten equation, known as the Eadie–Hof-
stee plot as shown in Fig. 1C [9]. Arguments have tended to favor
the reciprocal plot because it separates the two primary kinetic
constants, kcat/Km and kcat as 1/slope and intercept, respectively.
Although the Eadie–Hofstee plot produces more reliable estimates
[10], the presence of the dependent variable, v, in both axes makes
rigorous error analysis difficult. Fortunately, now with the advent
of fast personal computers and readily available software for
nonlinear regression, these arguments can be relegated to history.
Today, there is no reason for fitting data using either linear trans-
formation of the Michaelis–Menten equation in analyzing the
concentration dependence of the initial velocity.

2. Michaelis–Menten progress curve Kinetics

Although largely forgotten in the past century, Michaelis and
Menten were the first to fit full time course kinetic data and com-
pute a fitted parameter by averaging over all of the data to provide
a kind of global analysis. They derived an equation that predicted a
constant term that could be calculated from the product formed at
each time point as the reaction progressed toward completion,
including data obtained at several starting sucrose concentrations
and accounting for product inhibition.



Fig. 2. Global analysis of Michaelis–Menten 1913 data. (A) The original Michaelis–
Menten data are shown with the results of global fitting. The ratio of product
formed (fructose or glucose) divided by the starting substrate concentration is
shown as a function of time for various starting sucrose concentrations (20.8, 41.6,
83, 167 and 333 mM). The smooth lines are drawn based on numerical integration
of rate equations derived from Scheme 1 using the rate constants summarized in
Table 1 and an enzyme concentration of 25 nM. The inset shows the confidence
contours for a fit involving only two variables to define Vmax and KS. (B) Confidence
contour analysis showing the dependence of v2 on each pair-wise combination of
three constants (KS, Vmax, and KF, defined by k�1, k+2 and k+5 respectively, according
to Scheme 1). The index for the color coded display of v2 values relative to the
minimum are given by the inset. The central red area defines parameters yielding
an acceptable fit. Upper and lower error limits for each parameter are obtained from
a threshold defined by a 1.3-fold increase in v2 over the minimum [11], and are
designated by the thin black lines and the values listed on each axis.

Scheme 1. Invertase kinetic mechanism.
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where S0 is the starting concentration of sucrose, t is time, P is the
time-dependent concentration of product (fructose or glucose), and
KS, KF and KG are the dissociation constants for sucrose, fructose
and glucose, respectively. This analysis required prior estimates for
each of the dissociation constants derived from initial velocity mea-
surements. The rigorous test of their model was based upon calculat-
ing the value of this constant for each data point and then examining
whether there were any systematic deviations of the value of the
constant as a function of starting substrate concentration or time of
reaction. They stated, ‘‘The value of the constant is very similar in
all experiments and despite small variation shows no tendency for
systematic deviation neither with time nor with sugar concentration,
so that we can conclude that the value is reliably constant.’’ The aver-
age value of this constant then represents a kind of global data fitting
since it was calculated from fitting all of the data. Interestingly, the
constant they derived was Vmax/Km, not the Michaelis constant.

It is quite satisfying to note that modern computational meth-
ods of data fitting produce essentially the same value for Vmax/Km

as that derived by Michaelis and Menten with pen and paper
100 years ago. Michaelis and Menten presented an average value
of Vmax/Km = 0.045 ± 0.003 m�1, whereas our global analysis of
their data gives a value of 0.046 ± 0.001 m�1. Fig. 2A shows the
original Michaelis–Menten full progress curve data fit by nonlinear
regression analysis based upon numerical integration of rate equa-
tions for the complete model (Scheme 1) along with confidence
contour analysis using KinTek Explorer software [11,12]. An exam-
ple file (Michaelis–Menten_1913.mec) showing these data is avail-
able with the free student version of KinTek Explorer available for
both Mac and Windows PCs at http://www.kintek-corp.com.

During the past century, fitting full time course kinetic data has
not gained the wide acceptance of initial velocity measurements, in
part, because there is no universal equation describing the
approach to equilibrium. Derivations usually rely upon the approx-
imation that the substrate remains in excess over enzyme even as
the reaction approaches equilibrium, a requirement that may not
always be met. New approaches to deriving an analytical expres-
sion for full time course kinetics have been presented [13], but
even these require complex mathematical functions. Recently
there has been increased interest in fitting full time course kinetic
data brought on by the ease of fitting based upon numerical inte-
gration of rate equations without simplifying approximations
[12,14,15]. Indeed, as shown in Fig. 2A, global fitting of the original
Michaelis–Menten data easily reproduces in seconds what must
have taken months of computation by hand. It is a tribute to their
skill and diligence that modern computer based analysis provides
essentially the same value for their constant as Michaelis and
Menten calculated a century ago.

3. Fitting data based on computer simulation

In the traditional data fitting protocol, a model is proposed and
equations are derived to account for the time dependence of the
reaction. One then derives another equation to fit the substrate
concentration dependence of the fitted parameters to extract
primary kinetic constants. For example, in the case of steady state
kinetic data, the time dependence is fit to a straight line, based
upon the steady-state approximation. The rate is then plotted as
a function of substrate concentration and fit to a hyperbola to
derive estimates of kcat and Km. To study the effect of an inhibitor,
the whole process is repeated and then the apparent kcat and Km

values are plotted against the inhibitor concentration to ultimately
derive estimates of the true kcat and Km values and KI for the
inhibitor. Accordingly, one can describe this process as a kind of
parsing of the kinetic data to separate the complex terms to ulti-
mately derive the primary kinetic parameters. Proper error analy-
sis requires propagation of measurement errors through each step
of analysis.

http://www.kintek-corp.com
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Data fitting based upon computer simulation represents a
major paradigm shift requiring new insights. Data are fit to a
chosen model using numerical integration of the rate equations
so that no approximations or simplifying assumptions are required
[12,15]. Moreover, in the process of finding an optimal fit, the
intrinsic rate constants are varied in seeking a function that mimics
the time course of the reaction. Thus, the rate constants are derived
directly, not indirectly through complex functions of rate con-
stants. Like other regression analysis, the best fit base upon seeking
a minimum v2 value [16]:

v2 ¼
XN�1

i¼0

yi � yðtiÞ
ri

� �2

ð3Þ

where yi represents the data as a vector of N points, y(ti) is the com-
puted value at time ti, and ri (sigma) is the standard deviation of the
measurement. If sigma is not known, it generally is assumed to be
identical for all data or set to unity. An optimal fit is derived by anal-
ysis of successive trials to converge on a best fit defined by a min-
imum v2. However, in fitting based upon simulation, the y(ti) values
are computed by numerical integration of the rate equations rather
than from a defined equation.

Fitting to derive rate constants directly based upon a model
bypasses the need to subsequently fit the concentration depen-
dence of the measured rate after fitting the primary kinetic data
to a simplified function. This represents a major paradigm shift in
the way in which we design and interpret experiments. For
example, rather than conducting a series of measurements re-
stricted to the first 10–20% of reaction at various substrate con-
centrations, one can monitor a single reaction allowing the
reaction to run to completion, which provides data sufficient to
define kcat and Km if there is no product inhibition. As described
in more detail below, the full time course contains within it the
concentration dependence of the reaction rate as the substrate
is consumed over time.

Fitting the original Michaelis–Menten data by computer simu-
lation illustrates the methods involved. First we enter the com-
plete model as given in Scheme 1. We then enter starting
concentrations of enzyme and sucrose. The enzyme concentration
was not known by Michaelis and Menten, but we can estimate an
enzyme concentration of 25 nM in their assays based on modern
estimates of kcat = 500 s�1 [4] and the Vmax value reported by
Michaelis and Menten (0.75 m�1). Although the simulation re-
quires an enzyme concentration, any arbitrarily small enzyme con-
centration would suffice, and it is only used in our analysis to
convert kcat/Km to Vmax/Km values for comparison with the Michae-
lis–Menten analysis. Nonetheless, this estimate provides anecdotal
insight into how the original experiments may have been
performed.

The complete model requires values for 12 rate constants,
which far exceeds the information content of the data. One could al-
low all 12 rate constants to vary in fitting and then use a complete
expression for calculation of kcat and Km values, but the apparent
errors on the rate constants would be large because there are mul-
tiple sets of parameters that could account for the data. Therefore
this approach would not allow estimation of errors on kcat and Km.
A given set of kinetic data will only suffice to define a limited num-
ber of kinetic parameters. Thus, in order to obtain accurate error
estimates, modeling based upon numerical integration of rate
equations requires some rate constants to be fixed at arbitrary val-
ues to reduce the number of variables. For example for a simple en-
zyme-catalyzed reaction, one can use either of the following
scenarios to obtain estimates of kcat and Km.

Case 1 : Eþ S ¡
k1

ð0Þ
ES ¡

k2

ð0Þ
EP ¡
ðk3�k2Þ

ð0Þ
Eþ P;

kcat=Km ¼ k1; kcat ¼ K2
Case 2 : Eþ S ¡
k1

ðk�1�k2
Þ
ES ¡

k2

ð0Þ
EP ¡
ðk3�k2Þ

ð0Þ
Eþ P;

Km ¼ k�1=k1; kcat ¼ K2

Case 3 : Eþ S ¡
ðkdiffusionÞ

k�1

ES ¡
k2

ð0Þ
EP ¡
ðk3�k2Þ

ð0Þ
Eþ P;

Km ¼ k�1=k1; kcat ¼ K2

In each case, the rate constants in parentheses are held fixed at
the designated values so that there are only two variable parame-
ters during the data fitting. In Case 1, we use irreversible binding
and chemistry to directly estimate kcat/Km = k1 and kcat = k2. This
method has the advantage of establishing the specificity constant
directly and is preferred if there are large errors in estimating kcat

and Km, for example if the Km is larger than the highest substrate
concentration achievable experimentally. However, Case 1 cannot
be used if the reaction is fully reversible. Cases 2 and 3 both repre-
sent a rapid equilibrium binding assumption for calculating Km, but
with either k1 or k�1 fixed so that only one parameter is varied in
computing Km = k�1/k1. Case 3 has the advantage in that it guards
against modeling with second order rate constants exceeding the
theoretical diffusion limit of approximately 109 M�1 s�1. Of course,
the actual mechanism may not involve a rapid equilibrium binding,
but since the steady state measurements are not able to define the
individual rate constants, either of these methods can be used to
calculate kcat and Km. As long as appropriate equations are used
to calculate kcat and Km values, the values chosen for the fixed con-
stants do not affect the outcome of the calculation, and it is easy to
show that multiple fits using various combinations of parameters
all produce the same kcat and Km values. This analysis quickly illus-
trates that the information content of steady state kinetic data,
whether based on initial velocity or full progress curve kinetic
measurements, is only sufficient to derive two parameters, kcat

and Km (or kcat/Km). However, if the reaction is reversible, or if there
is significant product inhibition, then the data can provide addi-
tional information to define one or two additional parameters;
namely, kcat and Km values for the reverse reaction (from k�3 and
k�2) as described in detail below.

A common misconception is that it is better to fit steady state
data by traditional initial velocity methods to derive estimates
for kcat and Km because fitting by simulation is model-dependent
and therefore the parameters will be invalid if the model is incor-
rect. However, one should note that derivation of the equations for
steady state kinetic parameters is also based upon a model, albeit a
simple one. In fitting by simulation, one can derive estimates for
kcat and Km from any minimal model that adequately accounts
for the data while satisfying criteria for goodness of fit. One could
always use a more complex model and the resulting kcat and Km

values would be the same in either case, independent of the model
chosen. Like two sides of the same coin, since steady state kinetics
cannot distinguish alternative models, any model providing a good
fit is sufficient for computing kcat and Km values.

Michaelis and Menten noted significant product inhibition and
estimated the dissociation constants for both fructose and glucose
based upon competitive inhibition of the initial velocity. In fact, the
full time course kinetic data published by Michaelis and Menten
cannot be adequately fit without including product inhibition [2].
To fit the Michaelis–Menten data, we can assume rapid equilib-
rium binding of sucrose, irreversible chemistry, and fast, but
reversible product release to account for product inhibition.
Accordingly, we can directly calculate kcat = k2, KS = k�1/k1 and
KP = k3/k�3. The ‘‘global fit’’ based upon Eq. (2) only allowed
Michaelis and Menten to test the ability of their model to account
for the full progress curves using their prior estimates of Kd values
for sucrose, fructose and glucose, but they could not use their



Table 1
Invertase kinetic parameters.a

Rate
constant

Value Parameter

k1 (1e + 06 mM�1m�1) KS = 16.5 mM
k�1 1.65e + 07 m�1

k2 30600 m�1 Vmax = k2[E]0 = 0.76 mM/m
k�2 (0)
k3 (5e + 07 m�1) Assumed fast, irreversible product

releasek�3 (0)
k4 (5e + 07 m�1)
k�4 (0)
k5 5.88e + 07 m�1 KF = 58.8 mM
k�5 (1e + 06 mM�1m�1)
k6 9.1e + 07 m�1 KG = 91 mM
k�6 (1e + 06 mM�1m�1)

a Kinetic parameters used to model the original Michaelis–Menten data are
summarized. Modeling was based upon a nominal enzyme concentration of 25 nM,
in order to mimic the Vmax/KS value of 0.045 m�1 reported by Michaelis and Menten
[1–3] and the recent estimate of kcat = 500 s�1 [4]. The values reported here for k�1

and k2 were derived by global fitting using KinTek Explorer and gave Vmax/
KS = 0.046 m�1. Values in parentheses were held constant during fitting. The values
of k5 and k6 were held in a constant ratio of k6/k5 = 1.55.
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analysis of full time course kinetics to obtain independent
estimates of KS, KF and KG. However, fitting the same data set by
simulation affords estimates of Km and Vmax/Km and an average
Kd for product inhibition. Michaelis and Menten suggested that
the ternary E.F.G complex did not accumulate to a significant
extent based upon the weak binding of glucose and fructose.
Therefore to simplify the modeling of the kinetics, we employ a
fast, irreversible release of the first product from the E.F.G complex.
Accordingly, we can model the data using Scheme 1 and the rate
constants summarized in Table 1. Again, it is important to empha-
size that the intrinsic rate constants need not be correct since they
are unknown; rather, they are only used to calculate the steady
state kinetic parameters that are defined by the data.

Globally fitting the original Michaelis–Menten data using com-
puter simulation affords values for Km and Vmax/Km comparable to
the values derived by Michaelis and Menten [2]. It is interesting ex-
tend this analysis to ask whether the full time course data are also
sufficient to define product dissociation constants, KF and KG. First,
one must note that fructose and glucose are produced in equal
quantities during the reaction; therefore, there can be no informa-
tion in the data to distinguish the two. Accordingly, the only rea-
sonable questions to ask are whether the data are sufficient to
define an average dissociation constant, or whether one could de-
rive reasonable estimates of the two constants if the ratio of their
two values were known. Using the latter approach, we fit the data
globally keeping KF/KG = 1.53, based upon the measurements of
Michaelis and Menten. We fit the data set globally to derive three
constants, kcat, Km and KF to get the results shown in Fig. 2A.

3.1. Confidence contour analysis

Using computer simulation it is simply too easy to employ an
overly complex model, and indeed, as described above the method
requires a complete model with more unknowns than can be de-
fined by the data in many cases. Therefore, a significant challenge
in data fitting is to avoid over-interpretation by understanding the
inherent information content of a given set of data and adjusting the
model or restricting the range of fitted parameters accordingly.
This problem is evidenced by attempts to extract free energy pro-
files involving eight rate constants from full time course kinetic
data on alanine racemase [17], when the data are only sufficient
to define kcat and Km values in forward and reverse directions
[11]. Thus, one must have a firm grasp of the information content
of the kinetic data in order to derive fits based upon a minimal
model and a well-constrained set of rate constants. Moreover,
one needs tools to assess the extent to which kinetic parameters
are defined by the data. To this end, we added confidence contour
analysis to the KinTek Explorer software, where one rate constant at
a time is varied systematically and the data are then fit, allowing
all other variable parameters to be adjusted in seeking the minimal
v2 value. Examining the variation in v2 as a function of each vari-
able then provides a realistic assessment of the extent to which the
data constrain each parameter, independent of the values of all
other fitted parameters. This is fundamentally different from typi-
cal nonlinear regression covariance analysis, which is based upon
analysis of the variation in v2 for each parameter at the best fit val-
ues of all other parameters. Accordingly, typical standard error val-
ues derived from nonlinear regression grossly underestimate the
error range of each parameter when the parameters are seriously
under-constrained and/or they are correlated by non-linear func-
tions [11].

It is important to note that evaluation of the quality of a given
data fit is composed of two parts. First, goodness of fit can be eval-
uated based upon visual inspection to ensure that the fitted curve
tracks the centerline of the scatter in the data without systematic
deviations. Although this ‘‘chi by eye’’ is somewhat subjective, it
provides a good indication as to whether the model is adequate
to account for the data and a trained eye can discover systematic
deviations better than any algorithm. If the standard deviation
(sigma) of the original data is known, goodness-of-fit can be quan-
titatively evaluated based upon the expectation that v2, when nor-
malized by the known sigma values as in Eq. (3), should equal the
degrees of freedom, defined as the number of data points minus
the number of independent variables [18]. Once a good fit is
achieved, the second and equally important part of evaluating a
data fit is to determine whether the parameters are well con-
strained by the data. An overly complex model can provide a good
fit, but with ill-defined extraneous parameters. Confidence contour
analysis addresses the extent to which parameters are defined by
the data once a good fit is achieved.

Results of two-dimensional confidence contour analysis of the
Michaelis–Menten data are shown in Fig. 2B, demonstrating that
estimates for three kinetic parameters can be derived from these
data by global fitting. Each pair-wise combination of parameters
produces a well-defined local minimum in v2 as evidenced by
the areas shown in red. There are two methods of estimating errors
on parameters. First nonlinear regression analysis returns a stan-
dard error, which can be reliable if the parameters are well con-
strained, but can be grossly misleading if they are not [11].
Secondly, we can use a set threshold increase in v2 to set upper
and lower confidence limits on each parameter, which has the
advantage of allowing for asymmetric error limits; for example,
in some cases, data may define a lower limit on a given rate con-
stant, but no upper limit. The set threshold is calculated based
upon the number of data points and number of fitted parameters
[11]. In this case, a threshold of 1.3� the minimum v2 value is
appropriate. From the analysis shown in Fig. 2, KS ranges from 13
to 20 mM (16.5 ± 3 mM), which agrees with the estimate of
16.7 mM reported by Michaelis and Menten. The value for KF (cal-
culated from k5/k�5) shows a wider margin of error (58.8 ± 20,
upper and lower limits of 36 and 104 mM) indicating the data
are not sufficient to define this value with precision, but do afford
a reasonable estimate. Data collected at longer times or after the
addition of product at the start of the reaction would have pro-
vided a more refined value. Indeed, the values for KS and KF re-
ported by Michaelis and Menten were based upon much more
data than contained in Fig. 2A.

We obtained a value of Vmax = 0.76 ± 0.06 mM/m (upper and
lower limits of 0.7 and 0.84 mM/m). To get error estimates on Vmax/



Fig. 3. Simulation and deconvolution of progress curves. (A) Progress curves calculated at three starting substrate concentrations (5000, 3000 and 1000 lM) for a simple
irreversible enzyme catalyzed reaction (Scheme 2) and showing the decrease in substrate concentration over time. (B) The first derivative was calculated from the slope at
each time in A, and plotted as a function of the remaining substrate concentration in (B), where the data fit a hyperbola. (C) The data shown in (B) are graphed as a
Lineweaver–Burke plot, showing a straight line dependence, and demonstrating reduction of the data to a function of only two parameters. (D) A set of progress curves for a
fully reversible enzyme-catalyzed reaction. (E) Analysis of the instantaneous rate as a function of remaining substrate concentration from (D) shows deviation from a simple
hyperbolic relationship. (F) Attempts analyze the substrate concentration dependence of the rate on a Lineweaver–Burke plot show deviations from linearity. Simulations
were performed using the rate constants summarized in Table 2 according to Scheme 2 and an enzyme concentration of 1 lM.
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Km, one could propagate error estimates on Vmax and Km to
compute the ratio, Vmax/Km = 0.046 ± 0.008 m�1. However, the
apparent second order rate constant, Vmax/Km is known with great-
er certainty than either Vmax or Km individually, as indicated by the
oblong shape of the confidence contour in the inset to Fig. 2A. Thus
to get error estimates on Vmax/Km directly, one needs to restrict the
fitting to a single parameter defining Vmax/Km. Applying this analy-
sis to the data in Fig. 2A provides Vmax/Km = 0.046 ± 0.001 m�1,
which compares remarkably well with the value of
0.045 ± 0.003 m�1 reported by Michaelis and Menten. In addition,
our analysis shows that this limited data set was sufficient to
provide estimates for each of the three kinetic parameters based
upon global data fitting (Vmax/Km, KS and KF), although additional
data would have allowed resolution of the dissociation constants
for each product and increased the precision of each estimate.

3.2. The information content of progress curve kinetic data

Fig. 3 illustrates an approach toward understanding full
progress curve kinetics, taking advantage of the utility of the



Scheme 2. Minimal enzyme reaction pathway.

Table 2
Kinetic parameters used for synthetic full time course kinetics.a

Rate constant Figs. 2A, 3A Figs. 2D, 3C

k1 10 lM�1s�1 10 lM�1s�1

k�1 (10000 s�1) (10000 s�1)
k2 140 s�1 140 s�1

k�2 0 s�1 10 s�1

k3 (10000 s�1) (10000 s�1)
k�3 0 s�1 5 s�1

a The rate constants used to generate synthetic data according to Scheme 2 and
shown in Figs. 2A, 3A, 2D, and 3C are summarized. Normally distributed random
noise was added to the synthetic data (sigma = 50, 1% of the maximum signal).
Values in parentheses were held fixed in subsequent data fitting.
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simulation software to generate synthetic data. First, we show a
graphical deconvolution of the full time course kinetic data to
develop an understanding of the method and the information con-
tent of the data. Fig. 3A shows the simulation of the kinetics of sub-
strate depletion for an irreversible reaction, using Scheme 2 and
rate constants summarized in Table 2. The data illustrate the
decrease in rate as the substrate is depleted and the reaction
approaches the endpoint. The instantaneous rate, obtained as the
negative of the slope (�d[S]/dt) at each time point can be plotted
as a function of the remaining substrate concentration, revealing
a hyperbolic relationship (Fig. 3B). Graphing of the rate versus con-
centration on a Lineweaver–Burke plot demonstrates the linear
relationship in the reciprocal plot (Fig. 3C). Since the data can be
reduced to a straight line, it is clear that the information content
of the data can be represented sufficiently by only two parameters,
kcat and Km. Thus, there is nothing magical about full progress
curves, and they represent essentially steady state information be-
cause they are based upon multiple enzyme turnovers.

Fig. 3D–F show the same analysis for an enzyme where the
reaction is readily reversible. In this case, as the substrate is de-
pleted, product builds up and rebinds to the enzyme, leading to
product inhibition and reversal of chemistry. Attempts to trans-
form the data by analysis of the rate as a function of concentration
(Fig. 3E) and on a Lineweaver–Burke plot (Fig. 3F), show that the
data can no longer be represented by two parameters. More com-
plex modeling is required. Indeed, fitting the data by nonlinear
regression based upon numerical integration of rate equations for
a fully reversible model affords resolution of four rate constants
sufficient to define kcat and Km in each direction. The important
question is to ask whether each of the rate constants is well con-
strained in fitting the synthetic data. Keeping in mind that these
are synthetic data generated with a relatively small standard devi-
ation and a normal distribution of errors, this test represents the
best possible scenario for defining the information content of
kinetic data. Accordingly, this protocol of generating synthetic data
with a standard deviation that mimics experimental data provides
a standard for defining the maximum number of parameters that
could be obtained from a given experiment.

Synthetic data were generated using both an irreversible kinetic
model (Fig. 4A) and one where chemistry and product dissociation
are readily reversible (Fig. 4C) according to the rate constants listed
in Table 2. Fig. 4B shows the confidence contour analysis resulting
from an attempt to fit four constants to the irreversible kinetic data
set. It is apparent that k+1 (defining Km = k�1/k+1) and k2 (defining
kcat) are well constrained. However, k�2 and k�3 are not well
defined. Interestingly, although there is no lower limit, there is
an upper limit on k�3 (the rate of product rebinding) leading to
the conclusion that the Kd for product binding must be greater than
20 mM (k3/k�3 = 10000/0.5). This is based upon the observation
that there was no detectable deviation in the shape of the curves
that might have indicated product inhibition, and accordingly it
sets a lower limit on the magnitude of the Kd for product. Also note
that there is no upper limit on the magnitude of k�2 over the range
of the search, but this is dependent on the value chosen for k3

(10000 s�1). As shown in the inset to Fig. 4A, when only two con-
stants are allowed to vary (k�2 and k�3 are held fixed at zero), the
confidence contour shows that k1 (Km) and k2 (kcat) are well con-
strained. Moreover, the long shape of the range of acceptable fits
(red area) indicate that the product k1�k2 (defining kcat/Km = k1k2/
k�1) is better defined than either individual parameter.

In the case of a reversible reaction as shown in Fig. 4C and D the
identical experiment provided well constrained estimates for four
kinetic parameters, thereby defining kcat and Km in both the for-
ward and reverse directions. Thus, when the reverse rate constants
(k�2 and k�3) are significant relative to the forward rate constants,
the shape of full time course curves are perturbed sufficiently for
the values of the reverse kinetic parameters to be derived from
the data. This analysis demonstrates that the same experiment,
performed under identical conditions can yield 2, 3 or 4 kinetic
parameters, depending on the relative magnitudes of the underly-
ing rate constants. Accordingly, comprehensive global data fitting
is essential for evaluating the information content of the data
and the confidence contour analysis provides an important check
to establish upper and lower limits for each constant. If we had
attempted to fit the data in Fig. 4C using a model with all six rate
constants (not shown), the confidence contour analysis would
have revealed the expected limits; namely, that k1 P kcat/Km, k2,
k3 P kcat for the forward reaction and k�3 P (kcat/Km)rev and k�2,
k�1 P kcat,rev for the reverse reaction. Although confidence contour
patterns can be somewhat complex, they reveal accurate details
regarding the contributions of individual rate constants to the
measurable kcat and Km values and the information content of the
data. They provide a clear visual indicator when parameters are
well constrained, and even when a given parameter is not well
constrained, the confidence contour analysis accurately reveals
upper or lower limits that are important mechanistically.

4. Beyond the steady state

For the past century, the analysis of enzyme kinetics has been
dominated by the use of initial velocity measurements because
of the practical simplicity of the methods. Large volumes have been
published full of equations for different enzyme pathways, provid-
ing boilerplates for kinetic analysis to establish the orders of sub-
strate binding and product release [19,20], although some texts
also include a brief introduction to transient-state kinetics [21].
Emphasis has often been placed on measurement of the Michaelis
constant, Km, because it can be measured without knowing the en-
zyme concentration, as was the case for Michaelis and Menten, and
can be obtained even without knowing the absolute rate of reac-
tion. Although most enzymologists acknowledge that the Km is
not necessarily equal to the substrate dissociation constant, the
undercurrent of that thought still permeates the interpretation of
kinetic data today.

Modern enzymology is focused on understanding the structure/
function relationships governing catalysis. Based upon structures
derived by X-ray crystallography or NMR, models are proposed
for how the substrate binds at the active site, what residues come
into contact with the substrate(s) and how they bring about a
chemical transformation and finally release products. The focus is
on the events following substrate binding and preceding product



Fig. 4. Understanding progress curve kinetics. (A) Synthetic data were generated according to Scheme 2 using the rate constants in Table 2 for an irreversible model. The data
were then fit by nonlinear regression to the model with four variable rate constants to get the confidence contours shown in (B). The inset to figure (A) shows the confidence
contour obtained with only two variable parameters. (C) Synthetic data were generated using the rate constants in Table 2 for a fully reversible model and then fit to generate
the confidence contours shown in (D). All synthetic data were generated with random error following a normal distribution with a sigma value of 50 (1% of the maximum
signal), and using an enzyme concentration of 1 M. The axes labels on the confidence contour plots show the upper and lower limits for each rate constant defined by a 1.05
threshold in v2 as described [11]. All computations were performed using KinTek Explorer [12].
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release, and accordingly, steady state kinetic studies to establish
the order of substrate binding and the order of product release
are of minimal utility. To address the pertinent questions of today,
we must go beyond the steady state to observe reactions occurring
at the enzymes’ active sites. Accordingly, modern kinetic analysis
requires the application of fast kinetic methods sufficient to re-
solve events on the time scale of a single enzyme cycle, and de-
mands rigorous, quantitative data analysis to interpret those
results in a manner consistent with steady state turnover.

The methods of analysis and equations governing presteady
state kinetics have been reviewed previously [22,23]. Analytical
integration of rate equations yields a sum of exponential terms with
one exponential for each kinetically significant step in the pathway:

y ¼ c þ
Xn

i¼1
Ai � expð�ki � tÞ

where c is the endpoint of the reaction with n exponential
terms, each with a defined rate (ki) and amplitude (Ai). For a
one-step reaction, the observed rate of the exponential decay
(k) is the sum of the forward and reverse rate constants. For a
two-step reaction, the two exponential decay rates are the roots
of a quadratic equation, while for a three-step reaction, the
three exponential terms are the roots of a cubic equation, and
so on. Thus the math soon becomes intractable for any realistic
model. Moreover, fitting kinetic data to multiple exponentials is
error prone because of the arbitrary rates and amplitudes. In
reality, rates and amplitudes are related and this interdepen-
dence is lost when fitting to sums of exponentials. After fitting
the primary data, one still has to analyze the concentration
dependence of the observed rates and amplitudes in attempting
to extract the underlying intrinsic rate constants. Thus, the fit-
ting of transient state kinetic data is best accomplished by glo-
bal data fitting, relying on fast computers to do numerical
integration of rate equations to simulate each experiment where
the primary fitted parameters extracted from the data are the
rate constants. Moreover, multiple experiments can be fitted
simultaneously in order to obtain a single comprehensive model
that accounts for all of the data [12,24]. Thus modern computa-
tional methods bypass the difficult, often impossible step of
deriving equations for fitting data and avoid the requisite sim-
plification of complex reaction schemes, thereby affording a
comprehensive analysis without simplifying approximations. It
is also important to note that fitting based upon simulation uses
information derived from both the rate and the amplitude of the
observed reactions.



Table 3
Experimental information content: kinetic parameters derived from global fitting.a

Experiment k1 (lM�1 s�1) k�i (s�1) ki (s�1) k�2 (s�1) k3 (s�1) k�3 (lM�1 s�1)

A P2.6 P6.3 P6.3
A–Bb 2.6 ± 0.01 (0) P500c P260c 9.7 ± 0.4 <0.1
A–Bb P20c P220c 88 ± 1.4 15.6 ± 1 7.9 ± 0.06 <0.1
A–B–C 55 ± 2 580 ± 20 83 ± 0.5 14.6 ± 0.3 8.0 ± 0.03 0.09 ± 0.01
Simulated 57.2 600 82.2 14.7 7.98 0.086

a Rate constants for each step in the pathway are given as derived in fitting experiments A, B and C shown in Fig. 5. Global fitting was done sequentially as described in the
text: Exp A alone, then Exp A plus Exp B, then Exps A, B and C fit simultaneously. This illustrates the progression of knowledge as additional experiments are performed. The
final solution gives kcat = 6.3 s�1, kcat/Km = 2.6 lM�1 s�1 and Km = 2.4 lM, consistent with the steady state measurements. The row marked ‘‘Simulated’’ indicates the rate
constants used to generate the synthetic data.

b In fitting experiments A and B simultaneously, two local minima in v2 were found in different areas of parameter space giving the two sets of rate constants listed. The
first with irreversible substrate binding requires a rapid equilibrium chemistry step with K2 = 0.52, while the second requires rapid equilibrium substrate binding with 1/
K1 = 11 lM.

c For these rate constants, there is only a lower limit set by the data. The data can be fitted as long as the rate constants are greater than the value listed and are maintained
in a constant ratio with the reverse rate constant, e.g., k�1/k1 = 11 lM in row three.
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4.1. Information content of steady state and transient-state kinetic
data

In order to illustrate the typical evolving information as re-
search progresses, three experiments were simulated to generate
synthetic data for a simple enzyme catalyzed reaction according
to Scheme 2 and the rate constants given in Table 3 (last row).
For each of the three experiments, conventional fitting will be de-
scribed revealing the information content of the data and the pat-
terns indicative of the underlying mechanism. Then the results of
global fitting will be shown, with each experiment contributing
additional information to the growing body of knowledge.

This exercise also illustrates another important use of computer
simulation. Experiments can be simulated and synthetic data gen-
erated in planning experiments or comparing models to published
data. In addition it provides an ideal method for teaching kinetics
using ‘‘dry labs’’ and problem solving through data fitting. The free
student version of KinTek Explorer allows synthetic data to be gen-
erated and given to students in the form of a blank mechanism file
that can opened with the student version of KinTek Explorer or ex-
ported as a text file for fitting using other programs. The file used
to generate and fit the data given in Fig. 5 are available in the ‘‘3-
experiments.mec’’ file that is among the examples provided with
the software.

Experiment A (Fig. 5A) is a simple steady state kinetic experi-
ment observed by monitoring an absorbance change due to forma-
tion of product. The data over the first 20 s of reaction were fit to a
straight line and the rate was plotted versus substrate concentra-
tion to obtain kcat and kcat/Km values of 6.3 s�1 and 2.6 lM�1 s�1,
respectively (Table 3). If care is not taken to restrict the data fitting
to the initial linear portion, the kcat/Km values are underestimated
due to curvature at longer times. In this exercise, after fitting by
the traditional initial velocity approach, the full reaction time
course at each concentration was then fit globally by simulation.
The fitted curves superimpose on the data and are difficult to dis-
tinguish at the magnification shown in this figure. Fitting according
to Case 1 described above gives estimates of k1 P kcat/Km = 2.6 -
M�1 s�1 and k2, k3 P kcat = 6.3 s�1. We chose to fit to derive esti-
mates for kcat and kcat/Km (as in Case 1) rather than kcat and Km

because kcat/Km provides a lower limit on the magnitude of k1

(Table 3).
Experiment B (Fig. 5B) shows the results of a presteady-state

burst of product formation measured using rapid chemical
quench-flow methods. The time dependence of product formation
can be fit to a burst equation to derive estimates of the rates of
chemistry and product release.

½P�obs

½E�0
¼ ½EP� þ ½P�

½E�0
¼ A0 1� e�kt

� �
þ kcatt ð4Þ
This equation assumes that there is a single step limiting the
rate of formation of product at the active site, which could be
achieved at sufficiently high substrate concentration. In practice,
the burst experiment is initially performed at a substrate concen-
tration much greater than the Km, based upon steady state mea-
surements, but additional data may be needed to establish that
binding is faster than chemistry, as described below. Fitting by
nonlinear regression, provides estimates of the rate and amplitude
of the exponential burst phase and kcat from the linear phase. Each
variable in the burst equation is a function of all three rate
constants:

k ¼ k2 þ k�2 þ k3 ¼ 92:7 s�1

A0 ¼ k2ðk2þk�2Þ
ðk2þk�2þk3Þ2

¼ 1:42 lM
2 lM ¼ 0:71

kcat ¼ k2k3
k2þk�2þk3

¼ 11:6 lM=s
2 lM ¼ 5:8 s�1

Simultaneous solution of these three equations affords esti-
mates for each of the three rate constants: k2 = 71.5 s�1,
k�2 = 13.7 s�1 and k4 = 7.5 s�1. The presteady state burst experi-
ment provides a wealth of new information. It shows that product
release is rate-limiting and provides estimates for the rate of the
forward and reverse rates of the chemistry step, and its equilib-
rium constant. If product release had been faster than chemistry,
there would have been no burst of product formation, and accord-
ingly, the data would have supported the conclusion that kcat pro-
vided a measure of the rate of chemistry or a step before chemistry.
Thus the presteady-state burst experiment provides valuable addi-
tional information beyond what can be determined by steady state
methods and directly addresses questions pertaining to events
occurring at the active site of the enzyme.

Data fitting based upon simulation circumvents the convoluted
analysis to resolve the three rate constants from the amplitude and
rate of the burst. Moreover, by simultaneously fitting the data in
experiments A and B, one can derive estimates for each of the rate
constants that are consistent with both the steady state and pre-
steady-state data. However, there is still some ambiguity in the
parameters governing substrate binding versus chemistry in that
two local minima in v2 could be found in different areas of param-
eter space. In one set of parameters, if substrate binding was as-
sumed to be defined by kcat/Km, then the rate of chemistry must
be fast; otherwise one would see a lag in the formation of product
due to the slow rate of substrate binding (Table 3, row 2). Alterna-
tively, one could fit the data with rapid equilibrium substrate bind-
ing followed by slower chemistry (Table 3, row 3). The number of
data points and signal:noise ratio of rapid quench data generally do
not allow resolution of a lag phase, so one must rely upon other
methods to monitor the rate of substrate binding. Note that in fit-
ting the data to the burst equation (Eq. (4)), we assumed that sub-
strate binding was faster than chemistry. Fitting by simulation



Fig. 5. Information content of kinetic data. This figure shows synthetic data designed
to illustrate the information content of various kinetic experiments. (A) Steady state
kinetics with 0.5 M enzyme reacting with 0.2, 0.5, 1, 2, 5, 10, 20, and 50 M substrate.
The signal was observed as absorbance due to product with an extinction coefficient
of 0.04 M�1, such that the observable signal is equal to 0.04⁄[P]. (B) Presteady state
burst experiment simulated with 2 M enzyme mixed with 50 M substrate. The
observable signal is the sum of [EP] + [P]. (C) A stopped-flow fluorescence signal was
simulated with 1 M enzyme mixed with 2, 5, 10, 20, 50, 100, 200, and 500 M
substrate. The signal, as simulated and derived independently during data fitting was
defined by f1⁄([E] + f2⁄[ES] + f3⁄[EP]), indicated that the protein fluorescence change
was due to conformational changes occurring with the formation of product. The
fluorescence scaling factors derived to be: f1 = 0.55 and f2 = 1 and f3 = 1.26,
indicating a 26% increase in fluorescence with chemistry, but no change upon
substrate binding. The smooth curves through the data were calculated by simulation
from the global fit to the data according to Scheme 2 and the rate constants listed in
Table 3. Individual fits to experiments (A) and (B) were indistinguishable visually
from the global fits shown here and are not shown. Data and simulation are available
in the ‘‘3_experiments.mec’’ file in the examples folder of the free student version of
KinTek Explorer that can be downloaded at http://www.kintek-corp.com.
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revealed that the burst data could be explained by rate-limiting
substrate binding or chemistry. One could distinguish the two
models by performing a series of burst experiments at various sub-
strate concentrations, or by pulse chase experiments [25,26]. Alter-
natively, one might be able to monitor substrate binding kinetics
by stopped-flow fluorescence methods, if there is a change in pro-
tein fluorescence occurring naturally, or by the addition of a label
to the enzyme, or a label in the substrate [24,27–30]. Here we
show the hypothetical results of a protein fluorescence change.

Fig. 5C shows the simulated results of a stopped-flow fluores-
cence experiment perform over a series of substrate concentra-
tions. The fluorescence time dependence can be fit to a single
exponential:

Y ¼ A1 � e�k1 �t þ c ð5Þ

The absence of a detectable lag in the traces suggests that sub-
strate binding is a rapid equilibrium reaction preceding chemistry.
The concentration dependence of the rate fits a hyperbola provid-
ing estimates for the Kd (1/K1) for substrate binding and the max-
imum rate of the fluorescence change, which is defined by the sum
of k2 + k�2 + k3 (Scheme 2). In addition, the intercept provides an
estimate of the net dissociation rate (koff = k�2 + k3) and the initial
slope defines the apparent second order rate constant for substrate
binding (kon = K1k2).

k1 ¼ K1k2 ½S�
K1 ½S�þ1þ k�2 þ k3

k2 ¼ 78 s�1

k�2 þ k3 ¼ 27:9 s�1

1=K1 ¼ 13:7 lM

These data can be fit globally by simulation by defining the out-
put signal to be a function of changes in fluorescence occurring
upon or after substrate binding by the general formula: sig-
nal = f1⁄(E + f2⁄ES + f3⁄EP). Moreover, these data can be fit globally
along with experiments A and B to achieve a final set of parameters
that are consistent will all three experiments. This global fitting de-
fines a correlation between the rate of chemistry and the maxi-
mum rate of the protein fluorescence change indicating that the
fluorescence change is attributable to change occurring coincident
with the chemistry step, and not during substrate binding (f2 = 1,
f3 = 1.26). Thus, one does not assume which step leads to a change
in fluorescence; rather, proper fitting reveals the step. Moreover,
the concentration dependence of the rate of the fluorescence
change resolves the alternative models in favor of the rapid equi-
librium substrate binding followed by chemistry.

The final global fitting of the three experiments simultaneously
provides reliable estimates for all six rate constants in the pathway
and reproduces the constants that were used to simulate the data.
Moreover, the fitted parameters yield steady state kinetic parame-
ters consistent with those obtained by the original fitting of the
steady state data.

kcat ¼ k2k3
k2þk�2þk3

¼ 6:29 s�1

Km ¼ k2k3þk�1ðk�2þk3Þ
k1ðk2þk�2þk3Þ

¼ 2:37 lM

kcat=Km ¼ k1
k2k3

k2k3þk�1ðk�2þk3Þ
2:65 lM�1 s�1

The rate of product rebinding is defined largely by the approach
to equilibrium at the lower concentrations of substrate in Fig. 5A,
and confidence contour analysis (not shown) indicate that its value
is not as well determined as implied by the standard error analysis.
Full time course kinetic analysis over a range of substrate concen-
trations, or after the addition of fixed concentrations of product
would better define k�3.

This analysis shows that three straightforward experiments are
sufficient to resolve the rates of substrate binding, chemistry and

http://www.kintek-corp.com


Fig. 6. Reaction catalyzed by EPSP synthase. The reaction is shown in which S3P
(shikimate 3-phosphate) reacts with PEP (phosphoenolpyruvate) to form EPSP (5-
enoylpyruvoylshikimate-3-phosphate) and phosphate.

Scheme 3. EPSP synthase pathway and rate constants. Pathway and rate constants
are from (34).
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product release. Accordingly, this subset of experiments allows
questions to be addressed regarding the binding of substrates at
the active site of an enzyme and mechanisms of catalysis proposed
by examination of the structure. This protocol overcomes the com-
mon, but ambiguous interpretation of changes in kcat and Km due to
active site mutations, for example.

4.2. Single turnover kinetics

One of the first applications of computer simulation to derive a
complete reaction sequence was in studies on 5-enoylpyruvoyls-
hikimate-3-phosphate (EPSP) synthase (EC 2.5.1.19) leading to
the identification and isolation of a non-covalent tetrahedral inter-
mediate and estimates for all 12 rate constants in the pathway
[31–36]. The reaction catalyzed by EPSP synthase is a simple addi-
tion/elimination reaction shown in Fig. 6. The enzyme catalyzes
both the formation and the breakdown of the intermediate with
rate constants summarized in Scheme 3. Numerous experiments
were conducted in order to establish the enzyme reaction path-
way, including steady state kinetic studies to show ordered sub-
strate binding and product release, isotope exchange kinetics,
stopped-flow fluorescence studies on the binding of shikimate 3-
phosphate (S3P) and the herbicide, glyphosate (reviewed in [32]).
However, the most informative studies were conducted using ra-
pid-chemical quench methods to study the presteady-state burst,
and single turnover experiments of the reaction in the forward
and reverse directions (Fig. 7). In addition, the overall equilibrium
constant and the internal equilibrium constants for the chemical
transformations at the active site of the enzyme (K3 and K4) were
determined by quantification of products resolved by ion exchange
chromatography using radiolabeled substrates. All of this informa-
tion was combined in globally fitting the entire data set based
upon computer simulation [34].

Fig. 7B and D show the kinetics of a presteady state burst of
product formation for the reaction in the forward and reverse
directions, respectively. In each case, the data demonstrate that a
reaction after chemistry is at least partially rate limiting, but the
amplitude of the burst was small, approximately 40% of the en-
zyme concentration. The most informative are single turnover
experiments shown in Fig. 7A and C, in which the radiolabeled sub-
strate was mixed with an excess of enzyme. These single turnover
rapid-quench kinetic experiments revealed the formation and de-
cay of the intermediate, leading to its isolation and identification.
Moreover, the data establish the kinetic competence of the inter-
mediate by showing that it is formed and decays at a rate sufficient
to account for the depletion of the substrate and formation of the
product. Single turnover kinetic experiments provide such rich
information content because kinetically significant steps are re-
vealed as 100% of the substrate binds to the enzyme and reacts
to form intermediates and then product all in a single enzyme cy-
cle. It is important to note that conventional fitting of these data
would have been un-interpretable because the observed rates of
formation and decay of the intermediate are complex functions
of multiple rate constants and the amplitude provides essential
information to resolve the rates. Analysis of these reaction kinetics
by computer simulation resulted in a solution that accounts for
both the rate and amplitude of each reaction, as well as equilib-
rium and the steady state kinetic measurements.

4.3. Enzyme structure and dynamics

The ultimate goal of modern kinetic analysis is to understand
the role of enzyme structure in activity. This review ends with a
brief summary of our recent work to address the role of sub-
strate-induced conformational changes in enzyme specificity. We
address this question using DNA polymerases as a model system
because the alternative substrates are well known and specificity
is of paramount importance. In addition, DNA polymerases allow
single turnover kinetic studies to be performed with ease. In mix-
ing an enzyme–DNA complex with a single nucleoside triphos-
phate (dNTP), only one reaction occurs because the next
templating base will code for a mismatch, which binds weakly
and reacts slowly.

The role of induced-fit in enzyme specificity has been contro-
versial, including suggestions that a two-step binding sequence
cannot contribute to specificity more than one-step binding [37],
but that conclusion was based upon the assumption that initial
binding and the conformational change step were in rapid equilib-
rium and faster than chemistry. We sought to address this question
by attaching an environmentally sensitive fluorophore to the



Fig. 7. EPSP presteady-state and single turnover kinetics. (A) Single turnover in the forward direction. (B) Presteady state burst in the forward direction. (C) Single turnover of
the reaction in the reverse direction. (D) Presteady state burst in the reverse direction. The inset to each figure gives the starting concentration of reach reactant, and the
species shown in red contains the radiolabel. Redrawn with permission from [34]. The smooth lines were calculated by simulation according to the pathway and rate
constants given in Scheme 3. Data and simulations are available in the ‘‘EPSP.mec’’ KinTek Explorer example file.
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nucleotide recognition domain of HIV reverse transcriptase (HIV
reverse transciptase (HIVRT), EC 2.7.7.49) as shown in Fig. 8
[24,38]. Positioned on the surface of the protein, the fluorescent la-
bel does not perturb the kinetics of the reaction, but provides a sig-
nal to monitor changes in protein structure from open to closed
states after binding nucleotide.

The results of one experiment are shown in Fig. 9A. After mixing
TTP with an HIVRT–DNA complex, there is a decrease in fluores-
cence followed by an increase, representing a single turnover in
which the enzyme binds substrate, closes, catalyzes chemistry
and then opens. Fig. 9B shows the results of a rapid-quench flow
experiment to monitor the time dependence of the chemical reac-
tion. Fitting both curves simultaneously demonstrates that the
slow rise of the fluorescence transient is coincident with the rate
of the chemical reaction, implying fast opening after chemistry.
In studies not shown, the binding of TTP to an enzyme–DNAdd

complex (where the DNA was terminated by a dideoxynucleotide
to prevent chemistry) the fluorescence decreased rapidly in form-
ing the closed E-DNAdd–TTP complex, corresponding to that seen
by crystallography [24,39]. Finally, an experiment was done to
measure the release of bound TTP from a pre-formed E-DNAdd–
TTP complex (Fig. 9C). After mixing with an excess of unlabeled
E-DNA complex, there is an increase in fluorescence providing a
measurement of the rate of enzyme opening to release TTP. These
three experiments were fit globally to derive the pathway shown
in Scheme 4, where ED and FD represent the open and closed states
of the enzyme–DNA complex, respectively.

Surprisingly, because the rate of TTP release is slow relative to
chemistry, the specificity constant for the enzyme is equal to the
second order rate constant for substrate binding, determined by
the initial weak substrate binding and the rate of the conforma-
tional change.

kcat=Km ¼ K1k2 ¼ 7:5 lM�1s�1

kcat ¼ k3 ¼ 34 s�1

Km ¼ kcat
kcat=Km

� k3
K1k2
¼ 4:7 lM

Kd;net ¼ 1=K1ð1þ K2Þ ¼ 0:4 lM

The rate of chemistry cancels from the expression for kcat/Km be-
cause k3 is in both the numerator and denominator. Moreover, Km

is determined by the ratio of kcat and the substrate binding rate
(K1k2). Contrary to previous theories, these results indicate that
the substrate-induced conformational change is a major determi-
nant of enzyme specificity. The specificity constant for correct
nucleotide incorporation is governed by the nucleotide affinity in
the initial weak binding to the open state and the rate of the con-
formational change to form the closed state. This unexpected result
implies that specificity is determined by the most ephemeral of
states that are most difficult to study directly, the initial weak
binding and the rate of the conformational change. Therefore, in
order to understand the molecular details underlying the sub-
strate-induced conformational change, we have followed up these
studies by extensive molecular dynamics simulations [40]. These
simulations accurately predict the rates of the conformational
change in the forward and reverse directions and reveal new de-
tails at atomic resolution.

Much of the debate regarding the role of induced fit in enzyme
specificity over the past few decades was due to the lack of



Fig. 8. Structure of fluorescently labeled HIVRT. The structure of HIVRT was
rendered in pymol from 1rtd.pdb [39]. The position of the fluorescent label
(magenta spheres) was docked at the position of the E36C substitution [24]. Duplex
DNA is in blue (template) and green (primer), while the incoming nucleotide is
magenta (sticks).

Fig. 9. HIVRT kinetics. (A) Fluorescently labeled HIVRT in complex with duplex DNA
(200 nM MDCC-labeled HIVRT with 300 nM DNA) was mixed with various
concentrations of TTP (2, 4, 10, 20, 40, 60, 80, and 100 M) in a stopped-flow and
the time course of fluorescence was recorded. (B) Rapid quench-flow methods were
used to measure the time dependence of the chemical reaction after mixing the
HIVRT–DNA complex (150 nM MDCC-labeled HIVRT with 100 nM DNA) with
various concentrations of TTP (0.25, 0.5, 2, 10, 25, and 100 M). Redrawn with
permission from [38]. Smooth curves show the global fit to all of the date according
to Scheme 4.
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definitive data. Steady state kinetic analysis could not resolve the
issue and so theoretical arguments abounded. Single turnover
kinetic studies provided the direct measurement of events that dic-
tate the fate of substrate after the initial binding step and thereby
define the molecular events that determine specificity.

5. Summary

Here I have provided a brief history of enzyme kinetics from its
beginnings a century ago to modern applications of kinetic analysis
of enzyme reaction pathways that are made possible by the use of
transient-state kinetic methods and computer-based data fitting
routines. I have only hit some of the highlights of advances in
kinetic data analysis over the last few decades using examples
from my own lab. Certainly many others have contributed impor-
tant, insightful and instructive examples that could have easily
illustrated major advances in methods of analysis and information
to define enzyme catalysis. For example, I have not discussed the
use of singular value decomposition (SVD) to deconvolute time-re-
solved spectra, which is certainly an important technical advance
[41]. In recent collaborative work, we have simultaneously fit,
stopped-flow fluorescence transients, rapid-quench-flow data,
and SVD analysis of time resolve absorbance measurements to
deduce a unique branched enzyme pathway [42].

It is interesting to note that the constant derived by Michaelis
and Menten in the analysis of the full time course kinetics was
not the Michaelis constant, but rather, Vmax/Km. In some sense it
was a historical accident to define the steady state equation in
terms of kcat and Km values, resulting in confusion over the inter-
pretation of Km. Because of the importance of kcat/Km in determin-
ing enzyme specificity, efficiency and proficiency [43], it would
have been better if the equation had been defined in terms of the
two primary constants, kcat and ‘‘kcat/Km’’, such that Km was simply
the ratio of the two.

Scientists and historians often dream of time travel. In this
brief review of the history of enzyme kinetic data analysis, it is
amusing to think of what Leonor Michaelis and Maud Menten
would think of our current methods of data analysis. No doubt
they would be astounded at how the click of a computer mouse
can trigger millions of calculations to be completed in seconds
to find an optimal global fit involving a rather complex kinetic
model and multiple data sets, or that molecular dynamics simu-
lations of the motions of atoms could predict the molecular
details of reactions governing enzyme specificity. Nonetheless,
they would be justifiably proud of their accomplishments and
pleased at how their work has stood the test of such advanced
computational analysis. It is now our turn to ponder the new
discoveries of the next century and wonder whether our work
will stand the test of new scientific advances.



Scheme 4. HIV reverse transcriptase pathway and rate constants. EDn represents the enzyme-DNA complex with a primer n nucleotides in length; N, nucltleoside
triphosphate, PPi, pyrophosphate. From (38).
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